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It is shown that, in the flow of a viscous wall layer past a relatively steep obstacle at 
the wall, the Goldstein (1 948) singularity generated in the classical boundary-layer 
approach to separation is removable in a physically sensible fashion. The removal is 
effected by means of a sequence of local double structures, the last of which arises just 
beyond separation owing to the occurrence of a further singularity which is also 
removable and describes the necessary complete breakaway of the viscous layer from 
the wall. The novel forms of the local pressure-displacement relations are the key 
elements allowing the solution to retain physical reality throughout. Beyond the 
breakaway the reattachment process takes place only a t  a relatively large distance 
downstream, before the motion returns to its original uniform shear form. The present 
flow configuration, the first we know of where Goldstein’s singularity proves to be 
removable, has important applications in both internal and external flows a t  high 
Reynolds numbers and these are also discussed. 

1. Introduction 
The Goldstein (1948) singularity a t  separation and the three fundamental issues it 

raises lie a t  the very heart of the theory of high-Reynolds-number flows. 
His singularity is based on the apparently self-consistent local argument that in the 

approach of a boundary layer towards a separa.tion point the scaled skin friction can 
tend to zero in a singular fashion, being proportional to the square root of the distance 
upstream of separation, according to a classical theory where the necessarily adverse 
pressure gradient driving the boundary layer towards separation is known in advance. 
The first issue provoked by Goldstein’s argument concerns the question of whether or 
not the singularity does actually occur in a classical boundary-layer solution a t  the 
onset of separation. However this issue has largely been settled by accurate numerical 
solutions of classical boundary layers under prescribed adverse pressure gradients (see 
the review by Brown & Stewartson 1969) which point firmly to the occurrence of the 
Goldstein singularity in almost all circumstances of interest. The next issue then is the 
matter of whether the singularity is welcome or not. In  other words, can it be meaning- 
fully removed, in the sense of being smoothed out in a physically realistic manner by 
means of a new flow structure more closely surrounding the implied separation point, 
or does its appearance instead herald the collapse of the classical theory? The only 
serious and conclusive attempt to respond to  this question was made in an important 
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paper by Stewartson (19704.  From an analysis addressing the separation of a classical 
boundary layer driven by a subsonic or supersonic decelerating mainstream he found 
strong evidence in favour of the view that the Goldstein singularity cannot be removed 
in a physically sensible way. In the supersonic context, for instance, Stewartson showed 
that a removal of the singularity almost certainly leads to an unrea,listic and worse 
singularity in the local flow solution. There is little doubt that a similar conclusion also 
holds in many other contexts including transonic or hypersonic mainstreams and many 
internal flows. So it seems that the strategy of classical boundary-layer theory then 
leads to a catastrophe, and can be regarded as a failure, when separation is present. 
This of course raises the final issue: is there an alternative and successful strategy Z 
The answer, a firm ‘Yes’, is provided by the theory of viscous-inviscid interactions 
whereby a well-attached boundary layer is able to separate fairly abruptly owing to 
the action of a small pressure rise, but large adverse pressure gradient, spread over a 
relatively small streamwise length scale (in contrast with the classical supposition of 
a more gradual pressure rise). This alternative strategy started with the triple-deck 
structure of Stewartson & Williams (1969), Stewartson (1970b) and Messiter (1970)) 
has subsequently led to complete accounts of separation in external and internal flow 
situations and has been summarized by Stewartson ( 1 9 7 4 ~ )  1980)) Messiter (1979) 
and Smith (1979~) .  

It should not be inferred from the above that in all flow situations, once the Goldstein 
singularity is encountered at a separation, the theory leading thereto is automatically 
a failure, however. Neither should it be concluded that there is always a successful 
strategy alternative to the classical boundary-layer one. For the present paper presents 
a flow situation in which there seems to be no possible approach other than a classical 
boundary-layer treatment upstream of separation and in which the resulting Goldstein 
singularity at  separation does prove to be removable and in an eminently realistic 
fashion. The case of interest to us is not especially bizarre or contrived, incidentally. 
It arises in the fluid motion past an isolated obstacle in a wall layer, has a wide range of 
application in bothexternal andinternal flows (Smith 1973,1976~)  b;  Smith et al. 1981) 
and i t  concerns the solution of the boundary-layer equations subject to a given smooth 
displacement of the uniform shear flow holding far from the wall. 

The point is that the issue of whether the Goldstein singularity is removable in a 
physically sensible manner or not is usually a rather delicate matter, as is the issue of 
the existence of an alternative strategy; in particular both issues hinge on the pro- 
perties of the interaction set up locally between the induced pressure variation and the 
boundary-layer displacement in the neighbourhood of separation. Now for the flow 
situations mentioned originally where the boundary layer is driven by an external 
mainstream, and in certain internal flows also, it turns out that the local pressure- 
displacement interaction is such that increases in the prepsure and displacement are 
mutually reinforcing (at least in supersonic flow: subsonic flow is less easy to interpret 
on this point). This feature is then the cause both of the unrealistic flow behaviour 
found when a removal of the Goldstein singularity is attempted and of the existence of 
the alternative strategy of viscous-inviscid interactions which has proved successful 
in describing both supersonic and subsonic separation (Stewartson & Williams 1969; 
Sychev 1972; Messiter 1976; Smith 1 9 7 7 ~ ) .  So in such flow situations there seems little 
room for doubt about the nature of separation. But not all pressure-displacement 
interactions are mutually reinforcing. Indeed, the flow situation that concerns us 
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happens to provide an important example where the interaction is not mutually 
reinforcing; as a result the Goldstein singularity can be removed without any loss of 
physical reality. 

As well as having certain repercussions for the Goldstein singularity and hence for 
high-Reynolds-number flow theory in general, the present study is believed to yield 
also certain quite significant properties in the specific contexts of flow over obstacles in 
external boundary layers and of internal flow through constricted tubes. In  the former 
context, which obviously has strong possible applications in aerodynamics and atmo- 
spheric dynamics, the study enables the extension to be made, beyond the theory of 
Smith (1972, 1973) and Smith et al. (1981), to the understanding of more grossly 
separated external supersonic and subsonic motions. In  the context of the internal 
motions, where the possible applications are to physiological flows and machinery 
dynamics, the study complements those of Smith (1976a, b, 1 9 7 8 , 1 9 7 9 ~ ) )  particularly 
with regard to the separation from the constriction and the resultant long recirculating 
eddy or eddies. In both contexts the present work provides still further firm evidence 
in favour of the extended free streamline description as the correct limiting inviscid 
form for grossly separated flows. That description is almost certainly correct in internal 
flows (Smith 1 8 7 9 ~ ;  Smith & Duck 1980), is quite possibly correct in external flows 
also (Sychev 1967; Messiter 1975; Smith 1979b), and is found to be correct beyond the 
viscous separation in the situation which concerns us here. 

The plan and main findings of this paper are as follows. Section 2 introduces the 
steady laminar two-dimensional flow problem, which is expressed in terms of the 
boundary-layer equations for the velocity u in the x direction, the stream function @ 
and the pressure p .  This is in a non-dimensional form as set down by Smith (1976a, b )  
and Smith et al. (1981) and its full relation to external and internal flows is specified 
later in $6 .  The solution depends only on a single parameter h which effectively 
measures the lateral extent of the obstacle relative to the viscous wall-layer thickness. 
Thus the surface of the obstacle is given by ij = h F ( x ) ,  where the given function F ( x )  is 
independent of h and jj denotes the scaled lateral co-ordinate measured from the un- 
disturbed wall i j  = 0. It is required that the original shear flow u = ijfarupstream should 
remain undisplaced far from the obstacle so that u - i j  -+ 0 as i j  --f 00. The task then is 
to find the flow structure and properties holding when h is large. A classical boundary- 
layer strategy seems inevitable and it leads perforce to the Goldstein singularity a t  
the approach to separation ( 3  2).  The clue to the first new small length scale necessary 
closer to separation is provided by the properties of the small corrections ( 3  2) to the 
classical strategy and the new length scale, studied in $ 3.1, then merely causes a slight 
shift of origin in the singularity. Hence a shorter length scale comes into operation even 
nearer separation. It is on this second length scale that Goldstein’s singularity proves 
to be sensibly removable and regular separation occurs ( $  3.2). Beyond the separation 
a worse singularity is then enountered but it retains physical sense, with the reversed 
flow velocities and the wall-layer displacement being continually enhanced during the 
process, due to the nature of the local pressure-displacement laws (see also above). 
Therefore we move on to consider removal of the worse second singularity in 0 4. Here 
a still shorter length scale controls the flow behaviour, involving a nonlinear response 
very close to the wall, the gradual breakaway from the wall of the entire original wall 
layer and the eventual fading out of the adverse pressure gradient downstream as the 
breakaway process is completed. The whole separation and breakaway process takes 
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place through a sequence of double structures. Beyond the breakaway ( $ 5 )  extended 
free-streamline theory governs the grossly separated flow structure for a relatively 
large distance downstream until reattachment is forced by the thickening of the 
detached shear layer. The reattachment is sufficiently influenced by viscous diffusion 
that no significant extra effects are provoked upstream of the reattachment stage, 
while downstream the flow ultimately retrieves the uniform shear form. The final 
discussion in 5 6 includes comments not only on our particular flow problem, and the 
realistic removal of Goldstein’s singularity, but on the broader implications also. 

2. The arrival at Goldstein’s singularity at separation 
The flow problem of concern to this study arises in high-Reynolds-number motion, 

most significantly in internal flow through a tube (Smith 1 9 7 6 ~ )  b, 1978, 1 9 7 9 ~ )  but 
also in certain external flows whether supersonic or subsonic (Smith 1973; Smith et al. 
198 1 ). It is to solve the incompressible boundary-layer equations 

( 2 . 1 4  

with the boundary conditions 

u = + = O  at y = O ,  (2 . lb)  

v,p-+O, u + y  as x + - 0 3 ,  (2.1c) 

u - y+hF(x)  as y + 00. ( 2 . 1 4  

These describe the effects of an obstacle at the wall on the otherwise uniform shear 
flow in a wall layer. The Prandtl transformation y = ij - h F ( x )  has been applied 
already for convenience, so that the outer boundary condition (2.1 d )  reflects the 
required absence of any displacement of the original motion u = i j ,  v = p = 0 as 
mentioned in the introduction. The scaled obstacle shape F ( x ) ,  independent of h, is 
given and is assumed to be continuous and of continuous slope also although the latter 
condition could be relaxed at certain stations, a t  the start or finish of an obstacle 
of finite length for instance, without disturbing the ensuing investigation. Again, 
we will suppose that J’( 5 00) = 0, giving an undisturbed wall far upstream and down- 
stream, that the obstacle shape achieves a unique maximum F m a x ,  a t  x = x m a x  say 
( P ( x m a x )  = F m a x ) ,  and that the slope is monotonic on either side of the maximum, 
F’(x) 5 0 for x 5 xmax, giving a hump rather than a dent on the wall. Relaxation of 
certain of these conditions can lead to some extra interesting features but they are of 
relatively peripheral concern. More important is the height paramet.er h which 
effectively gauges the unscaled obstacle height relative to the unscaled wall-layer 
thickness in the original expansions, in terms of the Reynolds number, used to derive 
(2.1 u-d) from the Navier-Stokes equations (see references above). In  such expansions 
h is regarded as O(1) of course, but, once the closed problem ( 2 . 1 ~ - d )  is encountered, 
free of Reynolds-number dependence, all its solutions for 0 < h < 03 are equally 
relevant to the original formal treatment of the Navier-Stokes equations. 

In (2.1 a-d) the obstacle height hF(x)  plays the role of a given negative displacement, 
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Velocity profile 
far upstream 
o r a s y + -  

FIGURE 1. The general features of the wall layer flow (32) past the obstacle p = hlP(z) when h 
is large, up t o  the onset of Separation (z + 2,- ). 

while the pressure p ( x )  is an unknown function of x. Although linearized solutions for 
small h were analysed by Smith (1976b) and Smith et ul. (1981), the numerical solutions 
of the nonlinear stage h = O( 1) presented by Smith ( 1 9 7 6 ~ )  are of more relevance. The 
latter solutions include some which exhibit separation, a t  a station where the skin 
friction 7(x) = au(x,O)/ay passes through zero, followed by reversed flow. The 
separations there are almost certainly regular phenomena, in view of the prescribed 
smoothness of the displacement in ( 2 . 1 4  (see Catherall & Mangler 1966; Brown & 
Stewartson 1969; and below), and the extent of the reversed flow region downstream 
grows with h for a given shape F ( x ) ,  as one might expect physically. This raises the 
question, to be addressed henceforth, of what happens to the solution of (2.1a-d) as 
h-tco? 

For h $ 1 the form of the boundary conditions (2.1 c, d )  suggests trying the orderings 
y = O(h),  u = O(h) first, with x of O(1) because of the shape dependence F ( x ) .  These 
orderings are also in line with the alternative outer constraint 

$ - +(y+hF(x))2+p(x) as y -+ m, (2 . le )  

obtained from integration of (2.1 d )  and substitution into (2.1 a, c ) .  For (2.  I e )  suggests 
11. = O(h2), p = O(h2) when y = O(h).  Then the governing equations ( 2 . 1 ~ )  imply that 
y = O ( h )  defines only an outer inviscid region, viscous effects being confined to a thinner 
layer wherein y is smaller, of O(h-:), and so giving a relat,ive effect of order h-8 in the 
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outer flow (figure 1 ) .  In fact the outer flow is found to involve the direct continuation 
of the boundary condition (2.1 e ) .  Thus with the suggested expansion 

p ( z )  = h2p,(x) + h h ( z )  + . . . (2.2) 

for the pressure we propose that the expressions 

21. = h2[B(B+-(x))2+p,(z)J+h4~,(x) + ... , 
u = h(y + F ( x ) )  + O(exp) 

(2 .3a)  

(2 .3b)  

describe the outer flow for $l > 0, where y = hy. From (2.1 e )  the forms (2.2),  (2.3u, b )  
obviously satisfy the whole problem (2.1 a-d) except for the no-slip condition (2.1 b ) ,  
which, however, indicates setting the typical inviscid constraint of tangential flow as 
the wall is approached (g -+ 0 +). From the O(h2) term of (2 .3a)  therefore we can fix 
the leading-order pressure force as 

po(4 = -4F2(4, (2.4) 

yielding a remarkably simple pressure-shape law (Smith 1978). 

the form 
The thin viscous layer, with its O( 1 )  co-ordinate Y defined by y = h-4 Y, then has 

1c. = h$$,(x, Y )  + h-121.1(z, Y )  + . . . , ( 2 . 5 ~ )  

u = hu,(x, Y )  + h-*ul(z, Y )  + . . .) (2 .5b)  

because of (2.3u, b ) ,  (2.4) as ij -+ 0 +. Substitution of (2 .5u ,  b )  with (2.2) into ( 2 . 1 ~ )  
leaves the classical boundary-layer equations 

(2 .6a )  

governing u,, $,, where use is made of the known pressure gradient from (2.4). The 
expected boundary conditions appropriate to the viscous layer are 

u, = $, = 0 a t  Y = 0, (2 .6b)  

u,-+P(x) as Y-too, ( 2 . 6 ~ )  

uo,$,-+O as z+ -co, (2 .6d )  

from (2.1 b, c) and from joining the expansions (2.5a, b )  with those of (2 .3u,  b) .  Hence to 
leading order the viscous layer here is no more than a classical boundary layer driven 
by a known pressure gradient, - F ( x )  F‘(x). Since F ( x )  > 0 the pressure gradient is 
favourable when the obstacle slope F’(x)  is positive, upstream of x = xmax, and so the 
solution of ( 2 . 6 ~ 4 )  can be taken to exist up to x = xmax and somewhat beyond; an 
example is calculated by Smith (1978) ,  albeit for an obstacle shape different from those 
we have in mind; see also figure 9 ( b )  below. The solution can be found by numerical 
means in general (as in figure 9 b  below), advancing from the initial state of rest in 
(2 .6d) ,  and in particular determines the viscous-layer displacement /3,(x), defined by 
the behaviour 

$0 - F ( 4  [Y--Po(x)l  as y -+ (2.6e) 

stemming from ( 2 . 6 ~ )  with ( 2 . 6 ~ ) .  Once p0(x) is known the outer solution ( 2 . 3 ~ )  
requires that 

P1(4 = - F@) P O W ,  (2.7) 
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which fixes the pressure perturbation; and in turn (2.7) provides the driving force for 
the perturbations within the viscous layer which are controlled by the boundary-layer 
disturbance equations 

in view of ( 2 . 5 ~ ’  b )  with (2.2) and ( 2 . 1 ~ ) .  The boundary conditions for ( 2 . 8 ~ )  are 

u1 = $l = 0 a t  Y = 0, (2.8b) 

$ l - $ Y 2 + O ( l )  as Y-too, ( 2 . 8 ~ )  

ul+ Y, $1-+ &Y2 as x-f -co, (2.8d) 

for no slip a t  the wall, for matching with ( 2 . 3 ~ )  and for ( 2 . 1 ~ )  respectively. One could 
continue in the classical manner using the O(1) term in ( 2 . 8 ~ )  to fix the next term of 
O(h-l)  in the pressure and so on. 
In principle, therefore, the well-ordered schemes of classical boundary-layer theory 

provide the answer. In fact, however, they fail as usual in the general case where 
separation occurs, because of the approach of Goldstein’s (1948) singularity in the 
solution of (2.6a-d) near separation, Admittedly, a separation might be avoided by 
having an obstacle shape with only mildly negative slopes beyond x = xmax, thus 
producing in ( 2 . 6 ~ )  only a mildly adverse gradient, but we can regard that as just an 
interesting exception. In  general the change in sign of the slope F‘(x) beyond the 
maximum obstruction will cause the scaled skin friction T~ = (&,/a Y )  (x, 0) to tend to 
zero at a finite station x = x, > XmaX, because of the adverse pressure gradient acting in 
x > Xmax. Then there is little doubt that because of its classical nature the solution of 
( 2 . 6 ~ - d )  must acquire the Goldstein (1948) singular form as x -+ x,- . Certainly all 
reliable numerical studies of classical boundary layers approaching separation tend to 
verify that occurrence (Brown & Stewartson 1969), although a concrete analytical 
proof is lacking. We will take the occurrence of Goldstein’s singularity at separation 
to be inevitable (see also figure 9b below). It has the following well-known form 
(figure 1). 

As x --f x,- the flow of ( 2 . 6 ~ - d )  subdivides into two zones. First, for Y of O ( l ) ,  $o 
has the form 

2a 201 

,U ,U 
$0 = $os( Y )  + (x, - xp -O $As( Y )  + (x, - X)* -l@&( Y )  + -. . ( 2 . 9 ~ )  

from Goldstein (1 948)) where $o,( Y )  is the stream-function profile at separation, 
satisfying 

+pY3-&tgY5+.. .  as Y-tO, (2.9b) 

as Y-too. ( 2 . 9 ~ )  
$O,(Y) { Jx y -A1 + 4 1 )  

Here (2.9b) reflects the vanishing of the skin friction $&(O) at x = z,, while 

F, = F(xJ > 0 and PL = P‘(x,) < 0 

,U = -F,F; > 0 
are finite, and 

(2.9d) 

from ( 2 . 6 ~ ) .  Also ( 2 . 9 ~ )  is the outer boundary condition (2.6e) applied as x + x,-, 
with po(x,- ) = p, finite (see below), and the constants a,,a,(cc a;) are unknown. 
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In  the above the merging has already been anticipated with the second Goldstein zone, 
wherein Y is small and O(x,  - x)a and 

$o = (xS- x)tpq3/6 + (x,- x ) a 0 y 2 +  (x, - x)* ( c z ~ ~ ~ - & c z $ ~ ~ )  + ... (2.10) 

with y = Y(x , -x ) -&.  The matched expansions (2.9a), (2.10) formally satisfy the 
boundary-layer equations (2.6a), with (2 .63 ,  c,  e), locally and give the singular 
behaviours of the displacement slope and skin friction, 

po(x) ps- 2a0~-~(~ , -X) ' ,  7o(x) ~ ~ ~ ( X S - X X ) ' ,  (2.11) 

respectively. The constant a. remains undetermined, being dependent on the entire 
upstream flow for x < x, presumably, but it is believed to be non-zero, and so positive 
from ( Z . i i ) ,  in general. Again, the coefficient of the square-root singularity in p0(x) in 
(2.11) is negative sincep must be positive for forward flow as x + xs -  , from (2.9u, b ) ,  
and the large positive slope implied for the displacement seems physically in line with 
an approach to separation. The suppression of separation until x > zmax is also verified, 
since 3'; (and hence -pA(x)) must be negative as noted in (2.9d). 

The issue now is whether the Goldstein (1948) singular form of (2.9a)-(2.11) is 
removable, on a shorter length scale around separation, or whether instead the whole 
structure so far assumed is wrong and should be replaced. Stewartson ( 1 9 7 0 ~ )  provided 
strong evidence supporting the view that the singularity is irremovable, at least in any 
physically meaningful way and in the context of external flow driven by a uniform 
stream. The resolution of the difficulty in those circumstances is now believed to be 
that the classical boundary-layer structure assumed globally does not yield a correct 
limiting description of the Navier-Stokes equations and that in its place the concept 
of the interactive triple-deck separation (Stewartson & Williams 1969; Sychev 1972; 
Smith 1977a), embodied in a quite different global structure which may well be of the 
extended free-streamline kind of Kirchhoff (1869), Sychev (1967), Messiter (1975) and 
Smith (1979b), must be introduced. The context is therefore somewhat different from 
ours, in mathematical as well as the obvious physical terms. For our governing 
equations are always those in ( 2 . 1 ~ )  and for any finite value of h their boundary 
conditions (2.1 b-e) do not allow the Goldstein singularity to be present right a t  
separation, if the idea of a prescribed smooth displacement forcing the Separation t o  be 
regular is indeed correct, which we believe it is. Some backing for the idea is evident in 
(2.9a)-(2.1 I), incidentally, where regularity of the displacement would insist that go 

be zero and similarly, at higher order, that C Z ~  be zero, and so on. In  consequence we 
would expect the flow solution holding for h -+ co also to be regular right a t  separation, 
in contrast with the irregularities of (2.9u)-(2.11) just upstream. Again, there seems to 
be no alternative to the classical scheme of (2.2)-(2.8d) upstream of separation. 
Investigation shows that the alternative concept of an interactive process, whether 
leading to an upstream separation or not, tends to be ruled out by the imposed negative 
form of the effective displacement in (2.1 d) ,  although as usual one cannot claim to have 
covered all possible eventualities. In  view of these differences we will proceed to 
consider anew in 9 3 the possibility of removing the Goldstein singularity closer to the 
actual separation which is supposed to occur at x = x, + o( 1). 

u1 in the wall layer provides 
certain vital clues to the new length scales and structures arising in 3 3, in contrast with 
the dominant solution $o,uo which on its own does not immediately indicate the 

Beforehand, however, the higher-order solution 
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appropriate length scales to study. At first sight the governing equations ( 2 . 8 ~ )  for 
$1, u1 favour the ordering $l = O(x, - x)& as x + x, - in the lower Goldstein zone where 
7 is O( l), since the given pressure gradient in ( 2 . 8 ~ ~ )  is of order (x,- 2)-3 from (2.1 1) and 
$, is of order (xs -x)% from (2.10). The resulting ordinary differential equation for the 
leading term in $l then turns out to have no solution [cf. (2.12a)-(2.14~) below] 
satisfying the necessary matching conditions, however, and after some trials we find 
that three orders of eigensolutions more singular than the forced term above have to 
be present to allow a self-consistent account of (2.8a-d) as x -+ x, - . The proposed 
behaviour as x ic xs - is given by 

$1 = ln (~,--X)g,L(r)+go(r)+(x,-x)~ln ( X , - x ) g l L ( r ) +  (%--z) tSl(T)+ ..* (2.12a) 

in the lower Goldstein zone. Substitution into ( 2 . 8 ~ )  and use of (2.10), (2.11) for 
$,, u,, Po leads to the simple solution, from the O[(x, - x)-% In (x, -x)] terms of (2.8a), 

90L(T) = -*AoLr2 (2.12 b)  

for the leading term of (2.12a), where the no-slip condition (2.8b) and the requirement 
of no exponential growth as 7 + m have been applied. The constant coefficient A,, 
remainsunknown as yet. Similarly we find from (2.8a-d) with (2.10), (2.11), (2.12a, b )  
the next-order eigensolutions 

g o ( r )  = BA0r21 9lL(7) = *A1LT2, (2.12c) 

where A,, AIL are unknown constants. Then, at order (x,-x)-* in (2.8a), the ordinary 
differential equation 

9: - kU1Ts9; + 2pr29; - ~rU79, = - k + a,A,L?12 (2 .134  

is obtained for gl(r), where from the given form of Po in (2.11) 

k = p-ltc, Fs. (2.13 b) 

The boundary conditions appropriate are 

(2.13 c) 

(2.13d) 

from (2.8b) and to avoid exponential growth at infinity, respectively. The latter 
condition serves to fix the coeficient A ,  uniquely, since ( 2 . 1 3 ~ )  gives 

when (2.13 c) is applied and so we have the requirement 

from ( 2.13 d )  . Hence 

(2.14b) 

( 2 . 1 4 ~ )  

The presence of the leading eigensolution of (2.12a, b )  is established therefore. Working 
to higher order would also establish the values of the unknown coefficients A,, AIL in 
( 2 . 1 2 ~ )  and also perhaps the arbitrary multiple of r2 which can be added even to gl(7). 
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The expansion of the solution in the upper Goldstein zone where Y is of O( I )  follows 
readily from (2.12u-c),  ( 2 . 1 4 ~ )  and is found to  be 

$l = (x, - ~)-$p-l@,&( Y) { - A ,  In (xs - z) + A ,  + AIL(xs - x)* In (x, - x) + Al(xs - z)t}  
+... (2 .15)  

on substitution into ( 2 . 8 u ,  c )  with (2 .9a-c) .  Given the two singular behaviours of 
(2 .12a) ,  (2 .15)  as x 4 xs-, a comparison with (2 .10) ,  (2 .9 ) ,  respectively, suggests 
immediately that the length scale x = xs + O(h-B In h) should be examined next, since 
then in ( 2 . 5 ~ )  the dominant term of h-l@l becomes comparable with the dominant 
term of hh,b-, and so new balances different from the classical ones of (2 .2) - (2 .8d)  must 
be struck. 

3. Removal of Goldstein's singularity and the appearance of a more 
severe one 

It will be shown first, in $ 3 . 1 ,  that  the length scale just suggested, of order h-8 In h 
in (x,-x), merely causes a postponement of the Goldstein singularity by means of a 
small shift of origin in x. This origin shift then singles out a slightly different shorter 
length scale, of order h-8 in (xs - x), for study. Second, therefore, in 5 3.2 we will discuss 
the flow structure emerging on the shorter length scale. It is on the latter scale that the 
Goldstein singularity proves to  be removable and in a physically sensible way, with 
regular separation taking place, but at the expense of a second, worse, singularity 
occurring further downstream within the O(h-*) regime. The worse singularity is also 
physically sensible, however, and is considered further in $4. It too proves to  be 
removable and the basis is thereby provided for a self-consistent account of the rest 
of the flow development ( 5  5) including the ultimate reattachment much further 
downstream. 

3.1.  The  length scale of order h-3 In h 

We propose that when 
x = x,+h-Sln(h)X 

with X finite the new flow structure for ( 2 . 1 ~ - e )  has a basically two-regioned form, 
depicted in figure 2 and consisting of the main upper part of the oncoming wall layer, 
region (i), where Y is finite [y = O ( h d ) ]  and a lower part, region (ii), where y is only 
O(h-f(lnh)i) as implied by (2 .9) - (2 .15) .  Outside the main part (i) the outer boundary 
condition of (2.1 e )  can be achieved directly. I n  the upper region (i) where the flow 
features are almost inviscid the behaviours ( 2 . 9 )  and (2 .15)  with ( 2 . 5 a )  lead to the 
expansion 

$ = Y)+h-t(lnh)tJ,(X, Y)+h-*(lnh)-Bln (lnh)JIL(X, Y)+h-t(lnh)-&J,(X, Y) 
+h-#(lnh)%J,(X, Y)+h-Q(ln h)-*ln(lnh)J,,(X, Y )  

+ hf(1n h)-i Ja(X, Y )  + O(h-'(ln h)2)  (3 .2 )  

€or $, while the expansion indicated for p is 

p = h2( - @':) + h)(ln h)  ( -Ip,FiX) + h)( - F,P,) + h-*(ln h)3 fjl(X) 

+ h-*(ln h)-4 In (In h) fj lL(X) + h-i(ln h)-4 &(X)  + . . . (3 .3 )  
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(0 3.1) (§ 3.2) 

Classical J //// 
boundary layer 

(§ 2 )  

FIGURE 2. The double-structured sequence developed near z = za by the wall layer flow as i t  
proceeds up to and through separation (in region ( b ) )  and then breaks away from the wall (via 
regions I, I1 studied in Q 4). Diagram not to scale. 

from (2.2), (2.4), (2.7) and (2.11). The governing equations ( 2 . l a )  then yield the 
displacement solutions 

Jl(X Y )  = &Ax) $As( Y ) ,  JlL(X,  Y )  = &lL(X)  $As( Y ) ,  J A X ,  Y )  = $As( Y )  
( 3 . 4 a )  

for the leading terms of (3 .2 ) ,  where merging upstream with the classical boundary- 
layer form of $ 2  rules out the possibility of adding arbitrary functions of Y to Jl, JlL, J,. 
Further terms can also be worked out, while the match with the outer constraint (2.1 e) 
gives the pressurs-displacement relations 

E”,&l(X) = @l(XL E’,a^lL(X) = @lL(X),  <&AX) = @Z(X) ( 3 . 4 6 )  

between the unknown functions of X in ( 3 . 3 ) ,  ( 2 . 4 ~ ) .  
In  the lower region (ii) viscous forces come into play and y = h-k(ln h)a z with z of 

O(1). Again the results of (2.9)-(2.15) point to the form of the flow solution here, 
which is 

$ = h-Q(In h)Q ( 4 ~ ~ 3 )  + h-l(ln h)  $,(x, z )  + h-lln (In h)  glL(x, z )  

+ ~ - I $ , ( X ,  x )  + 
+ h-V(ln h)a $,(X, x )  + . . . 

h)9 $,(x, z )  + h-+(ln h)tIn (In h)  $ 3 L ( ~ ,  z )  

( 3 . 5 4  

and is in line also with the behaviour (2.9 b )  of the dominant profile of (3 .2 ) .  Substitution 
of ( 3 . 5 ~ )  into (2 . l a ) ,  along with the pressure expansion (3 .3 ) ,  confirms the result (2.9d) 
a t  leading order. The balances a t  the next orders give the solutions 

$1 = apz2a,(X),  $lL = +PZ2&1L(X), $, = ipz2&2,(X), (3 .5b )  

after matching with J1, JIL,  J2 as z -+ CO; and the governing equation 
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(3.5c) 

for G3. The only allowable solution satisfying the no-slip condition a t  z = 0 has the 
properties 

q3 = *pz26i3(X) + &K 25, p2fi1(X) &;(x) = K ,  ( 3 . 5 4  

where the constant Ii can be determined from the join with the solution in the upper 
region (i). This join and ( 3 . 5 4  give 

K = - 2ai, +&:(X) = , U - ~ K X + K ,  ( 3 . 5 e )  

respectively, with K ,  a constant to  be determined below. 
Finally the properties far upstream as X -+a must be in keeping with the Gold- 

stein singular forms of $ 2  as x + xs - there, so that we have the asymptotes for 
x+oO 

*p&,(X)  - a,(X()+aA,,IXJ-)+..., (3.6a) 

*p&,,(X) N - $A,, ]XI-* + . . . , (3 .6b)  

ip&,(X)  - -iA,IXJfInIXI +&A,JXJ-&+. . . ,  ( 3 . 6 ~ )  

&p&,(X) - a, IX1i-gA1,(XI-*+..., ( 3 . 6 4  

after some manipulation of (2.10), (2.12a-c) with (2.5a) as (3.1) comes into operation. 
I n  particular, (3.6a) is consistent with the solution (3.5e) for i&?(X)  provided 

K ,  = 3,!4-201,-,Ao~ 
and that leaves the solution 

&,(X) = 2p-1ao -x+- ( 3A0L)4 2ao 

(3 .7a)  

(3 .7b)  

for &,(X). Since the scaled skin friction B(X) = (au/az) ( X ,  0 )  is given by 

f(X) = h-*(ln h)ipu&,(X) ( 3 . 7 4  

to leading order, from (3.5a, b ) ,  the result (3 .7b)  suggests that the effect of the present 
structure and balances is merely to produce an effective origin shift in the Goldstein 
singularity of (2.11). The conclusion of an origin shift can be reinforced by further 
analysis of (3.2)-(3.6d) and we find the subsequent terms. 

where &3L(X) is a function of X as yet undetermined. Hence the Goldstein singularity 
is mereIy postponed and recurs a t  

This brings us to the next stage, which occurs when (X-3AOL/2a , )  is small and 
O(ln h)-l, as a comparison between the irregularities in (3 .7b)  and (3.7d) and reference 
to the expansion (3.5a), with (3 .5b) ,  indicates. 
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3.2. The shorter length scale and removal of Goldstein's singularity 

Following the previous paragraph, then, we consider the shorter O(h-t) length scale 
defined by 

with now finite. The origin shift involved in (3.9) might have been anticipated 
directly from the singular properties fixed in $ 2 of course, but it would seem a rather 
dangerous step in the theory to proceed directly from those singular properties to the 
length scale controlled by (3.9). Again, however, the flow needs to be studied only on 
two scales laterally, regions ( a )  and (b)  of figure 2. Region(a), the inviscid upper region 
where Y is of order unity, has features quite similar to those of the region (i) discussed 
in $ 3.1 and the solution develops in the displacement form (cf. (3.2), (3 .4a))  

II. = hAII.os( Y )  + h-)E,(X) II.;,( Y )  + O(h-*), (3.10) 

where - E , ( X )  is a function of X representing the unknown local displacement. Along 
with (3.10) the pressure now has the expanded form 

p = h2( -iFt)-h)(lnh) (3%&'AOA,,/2a0)+h*( - F , F ~ X - ~ / I s ) + h - ~ j & ( X ) +  ..., (3.11) 

in view of (3.3),  (3.4b), (3.7b,d) and (3.9).  Therefore the outer constraint (2.1 e )  applied 
as Y -+ 00 gives the pressure-displacement relation 

(3.12) 

(cf. (3.4b)) between the undetermined functions PI, El. This novel relation is remini- 
scent of the pressure-displacement laws which control separation and other interactive 
flow processes in external and internal motions (Stewartson 1974a, b ;  Messiter 1979; 
Smith 1977b, 1979a, b).  It would be the law appropriate to hypersonic flow, indeed, 
but for a change of sign. The sign change is crucial, however, for two main reasons. The 
first is that the law (3.12) tends to prevent free interactions from occurring upstream, 
unlike the other laws just referred to, and this feature adds weight to the earlier com- 
ments in $ 2  on the uniqueness of the solution structure ahead of separation. The 
second main reason will be described shortly. 

Between region ( a )  and the wall the viscous region (b)  is induced with y = h-& and 2 
of O( 1). Here the solution is described by the expansion 

- p , ( X )  = F , E 1 ( X )  

@ = h-8(+pZ3) + h-lp1(X, Z) + h-'e'$2(X, Z )  + . . . (3.13 a )  

stemming from the properties of (3.5a, b , d ) ,  (3.7b, d )  as (3.9) comes into play, as well 
as from (3.10) with (2.9b).  Substitution of (3.13a) and (3.11) into the governing 
equations ( 2 . l a )  again verifies the result (2 .9d)  a t  order h2, while the terms of order 
h'sa produce the solution 

$l(X,.z) = *pE1(X)Z2 (3.13 b)  

when (2.1 b )  and the join of (3.13a) [as Z 3 m] with (3.10) [as Y -+ 0 and (2.9b) holds] 
are imposed. At the next order, h2, ( 2 . l a )  requires that gtZ satisfy the linear equation 

( 3 . 1 4 ~ )  
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where (3.13 b) has been used, and the boundary conditions on $, are 
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- - 
$, = '5 = 0 a t  Z = 0 ,  $, not exponentially large as Z -+ co (3.14b) 

in the Z direction, together with matching conditions in the X direction which stem 
from those on El in (3.15b) below and from (3.12). Higher-order terms in the current 
expansions can also be considered and they seem to fall into a consistent pattern 
provided that (3.14a, b) are satisfied. The solution of the problem (3.14a, b) for 3, 
serves to determine p l ( X ) ,  El@) in fact, for the solution exists only if the right-hand 
side of ( 3 . 1 4 ~ )  satisfies a certain compatibility condition. This condition can be derived 
by subtracting p.ZEl(X)E;(X) from g 2 ( X , Z )  to give a function f,(X,Z), say, then 
differentiating (3.14a) with respect to x and solving the resultant linear equation and 
boundary conditions for a f2 /aX(X ,  2). The major steps here are described in Stewart- 
son's (1970a, b )  elegant appendix and we may appeal directly to his results, thus 
obtaining the condition 

8.2 

- -  

(3.15 a) 

for the existence of solutions to (3.14a, b).  Here the constant C, is fixed by the upstream 
constraint 

zji,(X) ,.. 2 p - ~ a , ( X ( ~ - p - 1 ~ ~ ~ ( X ~ - ~ l n ( ~ ( + p u - ~ A , ( X ~ - ~ +  ... as X - t  -m 
(3.15b) 

required by matching with the solution of Q 3.1 (see (3.6a-d) in particular), together 
with the earlier relation (3.12). Hence C, = - 2p-la;. 

Combining the viscous result ( 3 . 1 5 ~ )  and the inviscid one (3.12) therefore leaves 
the nonlinear integro-differential equation 

(3.15 c) 

with the incoming Goldstein form (3.15 b) ,  governing the unknown displacement 
- Zl(x). It can be verified that the asymptote (3.15b) is consistent with the equation 
( 3 . 1 5 ~ ) )  incidentally. Once a,(x) is known the pressure response then follows 
from (3.12) while the effective skin friction ispE,(X) from (3.13a, b); thus the displace- 
ment, the pressure perturbation and the skin friction are proportional to each other. 

The problem (3.15b, c) is similar to the two discussed by Stewartson (1970a, b) in 
the contexts of supersonic and subsonic separation under a virtually uniform stream. 
In  each context it was concluded that no physically sensible flow solution could result. 
Our case has some fundamental differences, however, connected principally with the 
first minus sign on the right-hand side of (3.15 c) which in turn arises from our pressure- 
displacement law (3.12). For the sign appears to rule out the existence of eigensolutions 
in addition to the forced behaviour of (3.15b) far upstream (cf. Stewartson 1970a), 
suggesting a unique solution. Moreover even if the solution then develops a singularity 
at a finite value of x (cf. Stewartson 1 9 7 0 ~ )  it does so in a physically acceptable 
fashion. Thus, the supposition that El@) N m ( X , - z ) "  as x+x,-, say, where 
m, n, xo are finite but unknown and n < 8, leads to a balance in (3.15 c) only if n = - 8 
and m = - 4p-lAOL (see A,, in (2.14c)), or n = 1, or n = 0. The first choice here raises 
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FIGURE 3. The solution (-) of (3.15b, c )  for ?il(L!?) which gives the skin friction, the pressure 
perturbation and the negative displacement during the removal of the Goldstein singularity in 
$3.2. Here the dotted line is the incoming Goldstein form (3 .15b)  and the dashed line the 
terminal second singularity (3.16). 

the possibility that the solution of (3.15b, c )  will terminate a t  a finite station x = 3, 
with the local behaviour 

Ei,(X) - - 4p-'AOL(X, - I)-$ as X -+ X, - . (3.16) 

Since AOL > 0 (3.16) implies an increasingly fast reversed flow being encountered near 
the wall as + 2,- . Hence the suggestion of (3.16) is in line with the idea that the 
flow solution can pass regularly through separation [at x = x,, say, where Zl(xs) = 0 
and the choice n = 1 just above holds], thereby removing the incoming Goldstein 
singularity of (3.15b), before moving into the singular form (3.16); for by continuity 
X, > x,. This scenario also reinforces a belief in regularity a t  separation. By contrast, 
the pressure-displacement law of supersonic flow under a uniform stream yields an 
increasingly fast forward flow a t  the singularity of the integro-differential equation 
(Stewartson 1970a), an unrealistic phenomenon which may be expected to occur also 
in the corresponding hypersonic situation, where the coefficient in (3.12) and hence 
in (3.16) changes sign, as well as in wall jets (Smith & Duck 1977) for example. 

A numerical solution of (3.15b, c) was obtained from a step-by-step centred 
difference treatment of the integral of (3 .15~)  with respect to x, with (3.15b) fixing the 
constant of integration, and is presented in figure 3. Tests were performed on the 
influences of the step sizes and the upstream starting position a t  which (3.15b) was 
set and as a result we believe the calculation to  be graphically accurate a t  least. The 
Goldstein asymptote (3.15b) is reproduced satisfactorily upstream and as x increases 
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the trends towards separation indicated by (3.15 b) continues unabated. Separation is 
found to take place a t  X = X,, where 

(3.17 a)  

and in accordance with the only possible choice n = 1 mentioned previously the 
solution proceeds regularly through separation. Further downstream, however, 
although al(X) appears to remain unique it becomes increasingly negative as 
increases and there seems to be little doubt that the termination of the flow solution 
proposed in (3.16) does describe accurately the numerical behaviour, as the com- 
parison in figure 3 shows. The termination implied occurs a t  X = X,, where 

X, = X,+(1*76)- 2BA0, 
Pn 

(3.17b) 
- "  

according to our calculations. 
We conclude therefore that the double structures of § 3.1, 5 3.2 do act to remove the 

Goldstein singularity and leave the flow solution regular a t  separation. Beyond 
separation a second and worse singularity, namely (3.16), is encountered but neverthe- 
less the physically not unrealistic behaviour of the motion associated with the second 
singularity encourages the view that it too can be removed, on a still shorter stream- 
wise length scale. Accordingly we will now pursue the matter further. 

4. The removal of the second singularity 
The next stage of the motion takes place on the shorter length scale of order h-2 in x, 

beyond separation. The scale and the entire structure and balances promoted within 
it are all implied by the flow features established in the previous section and especially 
by the increasing speed of the reversed flow close to the wall, and the abrupt increases 
in displacement and in the pressure perturbation, all embodied in the singularity of 
(3.16). 

Therefore we set 

Then as before the flow structure for 2 of O(1) consists of two regions, an upper 
inviscidly displaced region I comprising the majority of the oncoming wall layer and 
a lower viscous, but now nonlinear, region I1 nearer the wall. Figure 4 gives a sketch 
of the local flow features here. 

In the upper region I the O(1) lateral co-ordinate is Y again and the solution of 
(2.1 a).expands in the form 

II. = hfp,,( Y )  + r(8) @.L( Y )  + . . . ( 4 4  

in view of (3.10), (3.16), (4.1). Here the displacement r(2) is an undetermined function 
of 8. In addition the expression for the pressure is now 

asimplied by (3.11), (3.12)and (3.16) with (4.1). So theouter boundarycondition (2.le) 
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FIGURE 4. (a )  Schematic diagram (not to scale) of the double structure 1-11 of Q4 required to 
smooth out the singularity (3.16) and to complete the breakaway of the wall-layer flow. ( b )  
Sketch of the streamline pattern induced in region I1 near the wall. 

is satisfied by (4 .2 ) ,  ( 4 . 3 )  provided the new pressure-displacement law 

&(rZ) = F,r(rZ)-F,F:a (4 .4)  

holds, on use of (4 .1 ) .  The law (4 .4 )  connecting the unknown functions fjl(z), r(8) 
contrasts with the earlier local laws of (3 .4b ) ,  (3 .12) .  Here the locally uniform adverse 
pressure gradient K FsFL, which caused the original oncoming wall layer to  approach 
separation in the first place, suffers a finite change in character as opposed to the 
infinitesimal changes that occurred further upstream (see (3 .3 ) ,  (3 .11 ) ) .  On the other 
hand the present law like the earlier ones can be considered to be a free perturbation 
of the original relation (2 .4 )  which in turn is just a Bernoulli balance. 

The flow solution in the lower region I1 follows from the properties of (4 .2 )  with 
(2 .9b )  and has the development 

?/k = h-1+(2,2)+ .... (4.5) 

Here y = h-’2 and 2 is of order unity. Hence substitution into ( 2 . 1 ~ )  reproduces the 
classical boundary-layer equations 

( 4 . 6 a )  
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governing $(z, 2). In  addition the boundary conditions become 
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$ = & = o  a t  2 = 0 ,  (4.6b) 

$ ~ p ( 2 +  r(8))3 as z -+ 00, ( 4 . 6 ~ )  1 $-+gp23 ( O < B < C O )  as a+-,, (4.6d) 

from (2.1b) and matching with (4.2) in region I and with ( 3 . 1 3 ~ )  in the region ( b )  
upstream, respectively; a manipulation of (4.2), (2.9) consistent with the governing 
equation ( 4 . 6 ~ )  has been used t,o establish ( 4 . 6 ~ )  here. The flow response on the present 
short length scale is therefore dictated by the solution properties of the nonlinear 
interactive problem ( 4 . 6 ~ - d )  together with the law (4.4). This problem, like the linear 
ones discussed before, bears a resemblance to t h e  other interactive problems en- 
countered in quite different contexts (see Stewartson 1974u, b; Messiter 1979; Smith 
1977a, 6 ,  1979a-c; Smith & Duck 1977) in internal and external flows, but it also has 
some interesting unique aspects which can be seen below in the far upstream and 
downstream character envisaged for the local motion. 

First, far upstream as 9 +-a the join of the pressures in (4.3) and (3.11) requires, 
from (3.12), (3.16), 

fjl(8) - - F, Fi rZ - 4p-'F, A,, I rZ 1-4 + . . . (4.7u) 

so that from (4.4) the scaled displacement also diminishes algebraically, 
h 

r (2) - 4 , ~ 4 , ~  IX 1 -4 + . . . , (4.7b) 

which is consistent with the singularity of (3.16). Then ( 4 . 6 ~ )  retrieves a linear form, 
since 

$(rZ,2) - ~~pq1493+f (9 )+ . . . ,  (4.7c) 

where 9 = 2 I8J-i is O(1). Substitution of ( 4 . 7 ~ ~ - c )  into (4.60,) and application of the 
constraints (4.6b, c) yields the solution 

( 4 . 7 4  

for the perturbation in ( 4 . 7 ~ ) .  Hence the scaled skin friction f,,, = aa(8, O)/a^z tends to 
zero upstream but is negative, in the form 

(4.7e) 

which, again, is consistent with the scaled skin friction p E l ( x )  of 3 3.2, from (3.16) and 
(4.1). A comparison between (4.7e) and (4.6d) shows that the far upstream starting 
profile for the solution of (4.6a-d), (4.4) is already a separated one, an unusual feature 
but in keeping with the conclusions of 9 3.2. The dividing streamline $ = 0 starts off 
along the curve 2 N 12,~-~A, ,  Is/-$ from (4 .7c,d) .  

Second, assuming that the flow solution of (4.6a-d) remains regular as 2 increases 
from - co, we see that a self-consistent account of its far downstream behaviour can 
also be advanced. The slight diminishing far upstream of the incoming strong adverse 
pressure gradient in ( 4 . 7 ~ )  and the slight rise of the displacement in (4.7 b) are believed 
to herald the start of a nonlinear process in which the pressure gradient continues to 
fall and the displacement to rise, because of (4.4).  Let us suppose that as a result the 



Removal of Goldstein's singularity at separation 19 

FIGURE 5(a ) .  For the caption see next page. 

pressure gmdient ultimately tends to zero, from above, as 2 --f + co, with the 
pressure levelling out a t  an unknown constant value film. Then (4.4) requires 

- r(8) - - F;X - ~ ; l @ ~ ~ ,  ( 4 . 8 ~ )  

f i l + @ l O o  as 2 --fa), (4.8b) 

so that the displacement - r(d)  increases linearly with 8. This effective breakaway 
of the wall layer motion and the simultaneous levelling out of the pressure are both in 
line with the flow of ( 4 . 6 a d )  tending to concentrate in a detached expanding shear 
layer surrounding the dividing streamline 2 - - F i x  far downstream, leaving only 
a slower reversed motion underneath, between t,he shear layer and the wall, while above 
the shear layer the rest of the wall layer responds passively, retaining its original profile 
but displaced by a relative amount - h-3 r(2) according to (4.2). Thus the proposition 
for r(2) in ( 4 . 8 ~ )  reflects a breakaway of the majority of the original wall layer. The 
associated asymptotic solution is similar to those of Stewartson & Williams (1973), 
Smith ( 1 9 7 7 ~ ~  b, 1978), Smith & Duck (1977). It is controlled by the O(84)  thick shear 
layer, wherein 2 = - r(2) + 

4 - aSG,(<)+ ... as Z+m. ( 4 . 8 ~ )  

From ( 4 . 6 ~ - c )  and ( 4 . 8 ~ - c )  Go satisfies the nonlinear similarity equation and constraints 

with < of O( 1) and 

(4.8d) i 
G{ + $GoG," - $GA2 = 0, 

G0-4 ,u$+0  as f - t c o ,  

G;( -a) = 0, 

where the second constraint anticipates the slowness of the reversed flow beneath the 
detached shear layer. The solution of (4.8d) found numerically is shown in figure 5 and 
has the property 

Go( - CO) = - Co = - 1 . 3 9 ~ 4 .  (4.8e) 
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FIGURE 5. (a )  The similarity solution (4.8d). Here Go = ,&Go, g E pi [ .  ( b )  The numerical 
solution (-) of (4.10~1-e) for 7,, p ,  I? versus a, together with the upstream asymptotic series 
solution (. . . . . .) given in (4.11u)-(4.12~), the downstream asymptotes (4.8a, g ,  h)  (---) and 
the upstream asymptote (---) of ( 4 . 7 ~ ~ ) .  The constant p(00) remains arbitrary in the solution. 

Hence beneath the shear layer only a weak uniform backward stream is provoked, with 

N - ( - Fl)-I C,$Lf-i, h - - ( - FA)-' C, d-i, ( 4 3 f  1 
from (4.8e). Here (4.8f) is consistent with ( 4 . 6 ~ )  provided 

(see (4.8b)).  Also, a thinner viscous reversed sublayer of thickness O(L@) is provoked 
between the stream of ( 4 . 8 f )  and the wall and its similarity solution obtained numeri- 
cally predicts the behaviour 

?w(T) N - 0*528( - Fi3Fy1)4 2-s (4 .8h)  

for the scaled skin friction far downstream. 
Both the proposed forms ( 4 . 7 ~ - e )  and ( 4 . 8 ~ - h )  far upstream and far downstream 

give self-consistent and realistic behaviours for the motion, therefore. Judging from 
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those forms one might expect the motion to remain separated throughout the present 
stage of its development and to  become increasingly so, as the downstream distance 
increases, in the sense of the dividing streamline being forced further from the wall but 
with the strength of the reversed flow velocities eventually decreasing, according to 
(4.8f, h) ,  after an initial incremental stage implied by (4 .7~-e) .  

Due to the nonlinearity of (4.6a),  however, a numerical solution of the fundamental 
problem (4.6a-d) with (4.4) is necessary, to verify the above expectations among other 
things. Bearing in mind the anticipated presence of separated flow near the wall for 
all d ,  we tried several computational approaches intended to allow for both forward 
and backward iterative sweeping of the discretized flow domain; but remarkably 
enough it was found that afairly straightforward centred-difference approach involving 
only downstream marching instead seemed to provide a satisfactory numerical inte- 
gration of the system. First we set 

$ = (-P;)-I$,  = @ ( - ~ ; ) - $ p ,  r = (EP;~-+F, 
8 = PF+( -F;)-+x' 2 = ( J y ; z ) - + z  (4.9) 

to leave the fundamental problem in the form 

(4.10a) 

(4.10e) 

free of the constants F8, F;, ,u, using (2.9d). Then the infinite series solution developing 
from the leading terms (4.7a-d) upstream was considered, in order to gain some 
guidance on the numerical properties of the solution. The series solution takes the form 

(4.116) 

where f) = z" (gl-* and the functions qn(ij) and the constants 7rn are to  be found, but 
ql (q)  E 0. Again, and surprisingly for a reversed flow, eigensolutions in addit,ion to 
the terms of (4.11 a ,  6 )  far upstream do not appear to be possible mainly because of the 
signs present in the pressure-displacement law (4.4), or (4.10e) just as in $3.1. Sub- 
stitution of (4.1 1 a ,  b )  into (4 .10~-e)  formally leaves qn(q), 7 ~ , - ~  controlled by the linear 
ordinary differential equation and boundary conditions, for n 2 2, 

qJ0)  = qA(0) = 0, q;(0O) = 0. (4.12b) 
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Here the forcing term Qn(V) depends on contributions of lower order thanq,, 7 ~ , _ ~ ,  since 

. -  
(4.12 c) 

for n 2 2, so that ( 4 . 1 2 ~ - c )  allow the successive determination of the pairs (qn,7rn-l) 
for n 2 2. It can be shown in particular that the solution of (4.12a-c) for n = 2 implies 
the result 7r1 = (--4)!/24(4)! consistent with upstream asymptotes (4.7a-e), from 
( 2 . 1 4 ~ ) .  Calculations of (4.12a-c) were carried out for the first twenty terms of the 
series and are summarized in figure 5 .  Checks were also made on the effects of the step 
sizes used, the curtailment of the integration domain a t  a large value of 4 and the 
tolerances set in the iterative scheme required to solve for q2(7 ) ,  and as a result we 
believe the calculated solutions to  be satisfactory. There is a strong indication that the 
series solution may have a not insubstantial radius of convergence in terms of 1kl-l. 
Obviously it is divergent a t  a = 0, but when we worked in terms of a transformed 
co-ordinate x defined by x( 1 - ~ 8 )  3 = (2x8 - 1 )  (where 0 < x < l ) ,  in the hope that a 
series solution in powers of x might prove convergent over an extended domain, the 
same features as in figure 5 were found to hold. One major point of the series solution 
above is that it gives a very good idea of the solution properties. In particular it helped 
in the making of an accurate first guess in the iterative marching routine used subse- 
quently to solve ( 4 . 1 0 ~ - e ) .  Here, given a guess for the displacement function P(.if) 
consistent with (4.7b), (4.8a),  the boundary-layer problem of ( 4 . 1 0 ~ - d )  only was 
integrated forward, thus determining the corresponding pressure response @(a). Then 
(4.10e) was invoked to yield a new guess for ?(a) and so the iterative marching could 
be repeated until convergence was achieved. Again, checks were made on the influences 
of step sizes, of the outer and upstream boundary conditions, and of the tolerance in 
the Newton iterative scheme used a t  each discrete step. The routine was based on 
Smith’s (1972, 1974). The numerical results for F@), @(x) and the effective skin 
friction F;)( - Fi)-s .i, = T , ( 8 )  = X/aZ(a, 0) are displayed in figure 5. Although the 
forward marching scheme eventually proved divergent, or at least very slowly con- 
vergent, it  did so only after a long traverse of the flowfield had been accomplished and 
by then a distinctive trend towards the downstream behaviours of (4.8~-g) had 
already emerged, as the comparisons in figure 5 show. 

So the numerical evidence strongly supports the view that during the present short 
scale stage the flow adjusts smoothly from the incoming form ( 4 . 7 ~ - e )  far upstream 
to the outgoing form (4.8a-h) far downstream. The singularity of (3.16) is thereby 
removed. 

As the motion proceeds further downstream the entire original wall layer is forced 
to climb away from the wall (see ( 4 . 8 ~ ) )  as the pressure achieves its plateau, in (4.8b), 
and the reversed flow velocities diminish in strength. These features form the basis 
for the wake properties, the rest of the flow development, including the ultimate 
reattachment process which takes place over a vast length scale beyond the present 
stage and will be described in 9 5. 
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5. The remainder of the flow development, and reattachment 
The viscous shear layer emerging at  almost constant pressure on the downstream 

side of the nonlinear stage just studied is fairly concentrat'ed around the straight 
dividing streamline Y = h-*( - F:) 8, and the entire wall layer of thickness O(h-4) 
passively follows the same displacement curve, in the sense that above the shear layer 

from (4.2), ( 4 . 8 ~ ) .  On the other hand the shear layer spreads out with increasing 
distance downstream. Consequently the simple detachment effect of (5.1) continues 
undisturbed until the thickness O(24h-l) of the shear layer becomes comparable with 
the detached wall layer thickness O(h-4) of (5.1), i.e. until d reaches O(h2),  or from 
(4.1),  until x-xs = O(1).  When the latter stage is reached the whole detached wall 
layer alters and a t  the least must start to entrain fluid from underneath. Further we 
propose that the flow beneath the detached viscous layer of thickness O(h-4) then 
remains relatively slow, although not necessarily dominated solely by the need to 
supply the small entrainment into the viscous layer. This means that the pressure a t  
and below the viscous layer stays virtually uniform throughout the stage where x - x,is 
O( 1)  and positive, and so the present proposal corresponds to the extension of the free 
streamline approach which has been applied elsewhere to  internal and external 
separating flows. In  internal flows (Smith 1978, 1979a; Smith & Duck 1980) the 
extended free streamline approach is found to lead to a self-consistent account of 
grossly separated flows a t  high Reynolds numbers, even when reattachment eventually 
occurs. The same is now believed to be true in external flows also (Smith & Stewartson 
1973; Burggraf 1975; Messiter 1975, 1979; Smith 19793) although, unlike in the 
internal case, a consistent description of reattachment downstream has remained 
elusive so far in the external case, with one exception (Smith & Stewartson 1973; 
Stewartson 19743). The present flow situation can be regarded as an example of either 
case since it applies equally to internal and external motions over obstacles (Smith 
1976a,b; Smith et al. 1981). Nevertheless, the following indicates that  due primarily 
to the action of viscosity in the eventual reatt,achment process the extended free 
streamline approach proposed here does lead to a self-consisbent account of the grossly 
separated motion which develops during and beyond the stage x - xs = O( 1) currently 
under consideration. 

During the current stage, then, the thin detached viscous layer stays concentrated 
around the dividing streamline $ = 0 ,  which starts as the straight line 

in view of (5.1), with (4.1) and Y = hiy ,  to leading order. Indeed the dividing &ream- 
line must continue along the path y = yd(x), where 

throughout the current stage in order to preserve the uniformit'y of the pressure a t  
and below the thin viscous layer surrounding the dividing streamline. For above the 
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FIGURE 6. (a )  Sketch of the separated flow structure ( $ 5 )  mainly beyond the separation at 
x = 2,. The structure remains intact up to  distances O(h3) downstream. ( b )  The main features of 
the reattachment and final phase of the motion at distances O(h3) downstream. 

dividing streamline tlhe flow solution continues to take the inviscid form of (2.2), ( 2 . 3 ~ )  
to leading order, consistent with the outer boundary condition (2.1 d,  e )  with y = hg; 
but a t  t,he dividing streamline the requirements that $ = 0 and p,,(x) be uniform then 
yield ( 5 . 2 ~ )  to within a constant, which can be evaluated from continuity of pressure 
or streamline position a t  x = x, . Along with ( 5 . 2 ~ )  therefore we have the pressure 
level 

p = -lh2F , = constant ( 5 . 2 b )  

for x > x,, to leading order. An alternative view of (5.2a) in terms of the untransformed 
distance y” = y + h F ( x )  (see 9 2) gives the straight line 

y” = hF, ( 5 . 2 ~ )  

for the shape of the dividing streamline, in keeping with Smith’s (1978, 1 9 7 9 ~ )  con- 
clusions (see also § 6) .  Beneath the O(h-*) viscous shear layer astride (5.2a, c )  the fluid 
is only slowly moving. If it merely entrains into the shear layer, which is an eminent 
possibility, that would suggest that u, $are only O(h-4) and O(h4) there, but an eddying 
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flow with velocities satisfying h-) < u < h is also supportable. A match with the 
emergent properties (4.8 f-h) closer to separation as x 4 xs + is readily achieved 
(Smith 1979b). 

The flow within the shear layer is governed by the classical boundary-layer equations 
on the x-x, = O(1) scale, essentially with a uniform speed u = hF, just above and 
negligible speed below. It starts a t  x = x,+ in the form (5.1), except for the viscous 
modification in (4 .8~-e )  there, and continues to entrain fluid as x - xs increases. 

The balance above (see also figure 6) continues to hold over an enormous downstream 
range, until the flow enters its final phase a t  O(h3) distancesdownstream. For the shear- 
layer thickness, although O(h-*) for x of O( l) ,  expands like xi in the Chapman form far 
downstream and so becomes an appreciable fraction of the O(h) distance (in ( 5 . 2 ~ ) )  
from the wall only as the x = O(h3) stage is reached. This makes use of the assumed 
property F(c0) = 0 for the obstacle shape, although other far-field properties could be 
accommodated. I n  the final phase u, $, p ,  x, y have the respective orders h, h2, h2, h3, 
h implied by the behaviour of the previous stage as x 4 00, in (5.2a, 6 )  for example or in 
the Chapman form (see below). Hence from ( 2 . 1 ~ )  the dominant motion is controlled 
by the boundary-layer equations 

(5.3) 

throughout its final phase, where 

(u, $.p,  X, y) = (hU,  h2Y,  h2P, h32, hF) + . . .. (5.4) 

Starting conditions for (5.3) are 

'€'"-+_tS(F2-F~), U - + H  for y > $  as 2 + 0 + ,  (5.5a) 
Y , U - + O  for F<FS as z + o + ,  (5 .5b )  1 P(0) = -&F,2. (5.5c) 

Here (5.5a) joins the present solution with the previous uniform shear form (2.3a, b )  
holding above the incoming shear layer a t  y=$, by use of ( 5 . 2 ~ ) )  while ( 5 . 5 b )  
stems from the absence of any significant motion below the shear layer up to the 
present stage and ( 5 . 5 ~ )  matches the pressure with (5 .2b ) .  The boundary conditions 
beyond the start of (5.5a-c) are 

U = Y = O  a t  H = o ,  ( 5 . 5 d )  

U - T ~ O ,  Y - $ F z + P ( x )  as F+m,  ( 5 . 5 e )  

from (2.1 b, d, e ) ,  since F ( w )  = 0. The pressure P(2)  remains to be determined as in the 
rather different problems ofreattaching flow addressed by Jenson (1975), Smith (1979a) 
and Daniels (1979). 

The fundamental nonlinear problem (5.3), (5.5a-e) governing the final flow develop- 
ment requires a numerical solution. The main complications involved concern the 
strong singularity a t  the start of the flow and the presence and nature of the reversed 
flow immediately afterwards as an eddy of recirculating fluid below the dividing 
streamline Y = 0 is set significantly into motion a t  last. The singularity occurs because 
as (z, 7 )  4 (0 + , F,+ ) the Chapman form 

Y N 24fc(C), where 6 = (7 - 8) 2-4, ( 5 . 6 ~ )  
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referred to previously is recovered, from (5.5a, b ) .  Here from (5.31, ( 5 . 5 ~ )  b) ,  f,([) 
satisfies the Blasius equation 2f: + f, f l  = 0 but with fL(o0) = F,, f d (  - 00) = 0 and the 
solution has the property 

fc ( -co)  = - F ~ K ,  (5.6b) 

where K = 1.24. This property necessitates the existence of some slow reversed flow 
between 7 = 0, P = 4- as Z + 0 + ,  from (5 .5b ,  d) .  A uniform reversed stream like 
(4.8 f )  but cc 54 is inappropriate here, however, because between the stream and the 
wall the viscous sublayer required locally for the satisfaction of the no-slip condition 
has no corresponding similarity solution. This is perhaps not surprising in view of the 
deceleration required of the reversed flow by (5 .5b) .  In  fact it  prompts the suggestion 
that the motion near the wall must be forward, which in turn implies the presence of 
a t  least two eddies of recirculating fluid beyond 5 = 0, as in Smith’s ( 1 9 7 9 ~ )  study. In  
addition the existence of eigensolutions inside and outside the incoming shear-layer 
region of (5.6u, b )  apparently cannot be ruled out on the grounds of local consistency 
alone. Thus on the face of it the slowish starting flow beneath the incoming shear layer 
can be expressed in a number of ways, including the form 

Y =zmA,sin(hP)+ ..., P = - 1 F 2 - l A 2 h 2 Z 2 m + . . .  Z s  2 n  (0 < Z 4  1) ( 5 . 6 ~ )  

with the unknown constants A, A,, n satisfying h > 0, A ,  > 0,O < n 6 +, from (5 .5b ) ,  
(5.6b) and above. If n < i then h must be a multiple of nF;l from (5.7b) and almost 
certainly an even multiple if a consistent match is to be achieved between the shear 
layer and the inviscid region below. If n = the normal velocity generated above the 
shear layer is just sufficient to provoke a finite displacement of the Chapman profile on 
the scale [ = O( l ) ,  the full boundary condition for f, a t  [ = co then being 

f, - F X - & q h 2  (C+O3),  (5.6d) 

whereas for t < n < Q the finite part off, must vanish as 5 -+ 03. For n = + we also 
require A, sin hF, = - F ~ K  so that then A, > F!K and h > nF;’. 

Neither physical intuition nor Proudman’s (1960) suggestions seem to tie down the 
values of the unknown coefficients arising locally, although the entrainment-dominated 
eddy flow on the x = O( 1 )  length scale, corresponding to n = 4, would appear to be the 
only one which provides a direct match with the flow features (4.8f,g) just beyond 
separation. Presumably the need for a global solution of (5.3), (5.5a-e), which we 
would expect to yield the behaviour 

Y + i P ,  U + F ,  P - + o  as ~ + c o  (5 .7)  

as the original forward flow to (2.1 c) is retrieved far downstream, must place some 
restriction on the possible eigensolutions occurring in the initial phase although 
whether the solution to (5.3), ( 5 . 5 ~ - e )  and (5.7) is unique remains open to question. 
However, there seems to be little doubt that a solution exists, as in Smith’s (1978, 
1 9 7 9 ~ )  cases, and a preliminary numerical investigation of its properties was under- 
taken. This concentrated primarily on the importance of a satisfactory treatment of 
the strong Chapman singularity in (5.6a, 6) and used a multi-regioned technique, based 
on that developed by Smith (1972, 1974), Daniels (1974, 1976) and others, to deal with 
the singular behaviour. Thus the solution for Y was expressed in the form 

( 5 . 8 ~ )  
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in a middle domain, where = Zd and 5 = O( l ) ,  whereas outside, in an upper and a 
lower domain, we set 

Y = Y0(E,F). (5.8b) 

Then the flow equations in each domain were integrated forward iteratively in uniform 
steps of E ,  thus coping with the singularity (5 .6a,  b) .  The initial profile f, was taken as 
that with hA4 = 0 in (5 .6d) .  At each downstream step the lower and upper domain 
solutions were required to satisfy the wall condition ( 5 . 5 4  and the outer constraint 
( 5 . 5 e )  respectively while a t  the common boundary between the middle and the upper 
or lower domain continuity of Y and its first two derivatives with respect to was 
ensured. Second-order-accurate differencing with uniform steps in 5, H as appropriate 
was used on the first-order differential equations, for YM, Yo, their first two derivatives 
with respect to 5, F respectively, and for P, stemming from (5.3) with (5.9a, b) .  At 
5 = 1 a switch to a unified treatment in uniform steps of Z, 7 could then be safely made. 
Other details of the procedure follow the patterns set out by Smith (1972, 1974) and 
Daniels (1974, 1976). The calculation needed to be done only for one value of F, since 
Fs;2'Y, F,q1U, F % F ~ P  in (6 .3) ,  ( 5 . 5 ~ - e )  depend only on F F ~ Z ,  P,;lF, and we chose the 
value F, = 5 for convenience in the multi-region approach. Checks were carried out 
on the effects of the many step sizes involved, as well as the positioning of the outer 
extremities of the middle and upper domains, and they proved satisfactory. So far 
results have been obtained with the Reyhner & Flugge-Lotz (1968) approximation 
invoked whenever backflow occurred, although it is debatable whether or not this is as 
adequate an approximation as that inherent in the technique of first-order differencing 
often applied to separated flows, and certainly in the present instance it removes the 
possibility of a correct description of the detailed behaviour of the solution near 
5 = 0 + . However, as far as the overall properties of the solution are concerned, the 
proper treatment of the initial Chapman singularity as above is probably as crucial as 
the influence of the reversed flow especially as the latter turns out to be relatively slow 
almost throughout. In  other problems comparisons with more accurate methods are 
generally favourable (Williams 1975; Dijkstra 1978) although an improvement of the 
present calculations, which could presumably be achieved by use of sweeping methods 
like those of Williams ( 1  975) and Daniels ( 1  979), is clearly desirable. Figure 7 shows 
the calculated variation with 5 of the pressure P and the skin friction 7, = aU(Z, O ) / @ .  
A notable feature is the absence of any change in sign of the skin friction close to the 
start of the present stage. This suggests that, just as in Jenson's (1975) calculation of 
the supersonic flow behind a small backward-facing step, the secondary eddy men- 
tioned earlier is probably only a weak one in practice, a feature not uncommon in 
multiple eddy formations. Again, the calculated pressure increases in the X direction 
throughout the flow so that according to ( 5 . 7 ~ )  the influence of the initially reversed 
flow is very small. The adverse pressure gradient forces the initially separated motion 
to reattach, in a regular fashion, a t  a station Z = Z, = 0-076Fz, where 7 ,  = 0, and 
thereafter the pressure and skin friction tend uniformly to their limiting values of zero 
and unity respectively with increasing distance downstream. The corresponding 
streamline pattern is shown in figure 7 also. Further refinement of the numerical 
approach may slightly alter the quantitative properties of the results predicted here 
but, apart from the secondary eddy mentioned earlier, is hardly likely to disturb their 
qualitative features and the existence of a solution to the current final stage of the 
motion is believed to  be virtually certain anyway. 

F .  T. Smith and P. G .  Daniels 
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6. Further comments 
To us there would seem to be three main aspects of the present work worth further 

comment. The first is the removal of Goldstein’s singularity, occurring in the classical 
boundary-layer approach to separation ( $  2), in the asymptotic description for large h 
of the deceptively simple-looking flow problem (2.1 a-e). The second aspect concerns 
the fitting of the present work into broader contexts for internal and external flows a t  
high Reynolds numbers, especially with regard to the nature of separation. Thirdly, 
there is the matter of the global properties of the solution of Q 2-5, particularly as far 
as the recirculatory eddy or eddies and the long scale reattachment far beyond 
separation are concerned. Since the Goldstein singularity, or the question of whether 
its occurrence is welcome or not, is so fundamental to the understanding of high- 
Reynolds-number flows, however, its removal here and the many corresponding 
repercussions deserve most comment, initially a t  least. 

The removal of Goldstein’s singularity a t  separation is effected using a sequence 
of local double structures (§§3-4). The first length scale induced ( 3  3.1 ) is fixed primarily 
by the higher-order properties of the boundary layer, where eigensolutions are forced 
during the approach to separation (see the end of $ 2) .  On that length scale the singu- 
larity is merely given an effective origin shift and a shorter scale variation then sets 
in ( S  3.2). On the shorter scale the interaction between the pressure disturbance and 
the displacement becomes just enough to remove the Goldstein singularity and the 
flow passes through separation in a regular and linear fashion. Only a mild overall 
pressure rise is produced in the progress through separation and the increase in the 
wall layer displacement is correspondingly minute. It is perhaps surprising that the 
interaction has the effect of gradually reducing the adverse pressure gradient as the 
flow passes through separation but this seems to be in line with the idea that the 
incoming boundary-layer motion is already firmly on its way towards separating and 
so the originally strong adverse pressure gradient does not need to be enhanced to 
preserve that trend of the motion. Instead the nature of the pressure-displacement 
relation is unusual in the sense that the ever-increasing displacement produced by the 
separation process causes the gradient of the associated pressure disturbance to become 
increasingly favourable. This interaction is mutually reinforcing and strengthens 
dramatically beyond separation to produce a second singularity and, thereby, a still 
shorter length scale for the flow. The new properties on this scale ( 3  4) reflect the need 
for the initial strongly adverse pressure gradient to be reduced still further, since 
separation has already been accomplished and the next requirement is mainly for the 
reversed flow velocities to be diminished significantly as the bulk of the boundary layer 
starts its breakaway from the wall. The character of the second singularity and the 
resultant new double structure required to remove it exactly fit the above need. For 
the flow development becomes nonlinear and as a result the incoming adverse pressure 
gradient starts to suffer a substantial reduction in size. Accordingly the displacement 
increases, because of the unusual pressure-displacement relation. Indeed, eventually 
downstream, the adverse pressure gradient tends to zero, the pressure approaches a 
plateau level and the displacement must then grow indefinitely, giving the breakaway 
of the bulk of the boundary layer ($4). The subsequent flow development is then 
governed completely by extended free-streamline theory a t  leading order until a t  a vast 
distance downstream the motion enters its final stage ( $  5) where the reattachment, 

2-2 
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and the recovery to a uniform shear form, take place under the action of viscosity. 
Comparisons between the overall structure proposed in this paper for the solution of 
(2.1 a-e) when h is asymptotically large and the calculations for increasing values of h 
by Smith ( 1 9 7 6 4  are generally encouraging; see also figure 8.t  

Despite the complications it seems clear that the physically sensible removal of 
Goldstein’s singularity hinges on the Iocal pressure-displacement law. For the law is 
the main difference between our situation, where a meaningful flow development is 
induced during the process of removal (§§3-5), and Stewartson’s (1970a), where a 
removal is found to produce no sensible flow development. There are other differences 
of course. For instance Stewartson showed that a three-tiered structure is set up by 
means of an interaction with the mainstream motion present in his case, whereas 
our case is virtually divorced from any mainstream effects because of the smallness 
of the length scales involved (see also below) and so is controIIed by a sequence 
of two-tiered structures during separation and breakaway. However, even that 
difference manifests itself in the respective pressure-displacement laws governing 
the viscous flow near the wall. Mathematically the significant difference between our 
small-scale law(s) and most larger-scale law(s) holding under a mainstream is very 
simple: there is a change of sign [compare (3.4b), (3.12), (4.4) with the laws of super- 
sonic, hypersonic, transonic or channel flow, for example]. The theoretical and physical 
repercussions are quite profound nonetheless. In Stewart.son’s ( 1970a) situation the 
local law allows, first, eigensolutions, i.e. free interactions, t’o develop upstream and, 
second, aphysically unrealistic singularity to occur during the removal process, a t  least 
in supersonic flow where the law is Ackeret’s. Our local law allows neither of these 
occurrences. It insists that the pressure and the negative displacement increases or 
decrease together in view of the nonlinear balance (2.4) which turns out to hold 
throughout our flow provided F ( x )  is replaced by the appropriate unknown displace- 
ment during and beyond separation: see (3.4b), (3.12), (4.4), ( 5 . 2 b )  andSmith (1979a), 
Smith & Duck (1980). Thus a t  any station an extra increase, say, in pressure would 
tend to decrease the skin friction and push the wall layer slightly away from the wall, 
through the viscous response; but then the implied increase in displacement contradicts 
the pressure-displacement law, so that the interaction is damped and cannot develop. 
Consequently uniqueness of the solution seems to be favoured in our case. Given the 
physical sense of the original governing equations the ensuing unique flow development 
is then almost bound to be realistic. Hence beyond our separation the singular 

t In addition quantitative comparisons are given in figure 9 (a)-(e) for the obstacle 

F ( x )  = x exp ( -x2/32) in x > 0, F(x)  = 0 in x < 0, 

chosen by Smith (1976a) and for which xmmrx = 4. First, figures 9 ( a ,  b )  compare his results for 
the pressure and skin friction with the theory of 3 2 up to separation. We calculated the sohition 
of the classical boundary-layer problem (2.6 a-e) using a numerical scheme similar to those 
used before ($8 4, 5)  and integrated up to the onset of the Goldstein singularity a t  separation, 
which was found to occur at approximately x, = 4.78, giving F,  = 2.341. The calculated 
akin friction and bounda,ry-layer displacement are given in figure 9 ( b ) .  The agreement between 
the present theory and Smith’s results is fairly encouraging, especially when the higher-order 
effect (2.7) in the pressure expansion of (2.2) is allowed for. Second, figures 9(c, d )  compare 
his results with the theory of 3 5 on the suggested long scale of O(h3) beyond separation. Again 
the overall trend is fairly supportive of the present theory. Lastly, figure 9(e) presents the 
dependence of the separation and reattachment positions on h, according to Smith’s calculations 
and our theory, which are found to be in reasonable agreement. 
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behaviour has the displacement increasing sharply, therefore both the local pressure 
and skin friction fall rapidly and the increasingly less adverse pressure gradient is 
physically sensible when considered in the light of the breakaway of the boundary 
layer downstream, as noted before. Likewise the remainder of the flow development 
retains physical reality ( 3  5). Returning to  the larger-scale situation of Stewartson 
(19704, we can see that although the pressure-displacement law there leads to an un- 
realistic singularity the law nevertheless hints a t  the ultimate resolution of all the 
difficulties inherent in the classical approach there. For the upstream interactions 
which the law allows to take place upstream in Stewartson’s ( 1 9 7 0 ~ )  modification of 
the Goldstein singularity have exactly the same qualitative balance as that  which 
sets off regular separation in the alternative, self-consistent, theory of triple-deck 
structures, in supersonic flow. Any pressure rise causes the displacement also to rise 
bot,h through the viscous response of the wall layer and the pressure-displacement law 
and so the interaction is self-supporting. This free interaction can develop in a well- 
attached boundary layer, to force a sudden separation, just as it can develop in the 
nearly separated boundary layer produced from a slow classical approach; but 
fortunately the subsequent failure in the classical approach is not reproduced in the 
triple-deck approach. Instead the latter approach provides the required complete 
theoretical account of regular separation and breakaway, in supersonic, subsonic and 
many other large-scale flows. All in all, the different natures of the pressure-displace- 
ment relations completely dominate matters. It is tempting to conclude from the 
above that depending on the local pressure-displacement relation a proper account of 
separation can always be gathered either from the classical approach or, failing 
that, from the free-interaction approach, although such a conclusion is perhaps too 
simple to be true given all the possible complicated features which can arise in high- 
Reynolds-number flows with separation. 

We hasten to add here that in our opinion the realistic removal of Goldstein’s 
singularity a t  separation in the present work almost certainly does not disturb the 
powerful standpoint, developed in recent years, that in general the Goldstein singu- 
larity cannot be removed in any physically sensible way; that consequently its 
occurrence in a classical boundary-layer theory usually means in effect that such a 
theory is incorrect; and that the alternative theory, based instead on the local inter- 
active description of separation (by means of triple decks, double decks and other 
structures as appropriate: see the summaries by Stewartson 1974a, b,  1980; Messiter 
1979; Smith 1979c), then provides the proper basis for (inter a h )  the asymptotic 
descriptJion of separating flows. Rather, the present work simply raises the possibility 
that in certain flow situations the occurrence of the singularity may not be catastrophic 
for the theory used in the approach to separation. To attempt to name many candi- 
dates for such certain flow situations would seem too risky at  the moment and indeed 
the ultimate list, of the really distinct flow situations which do admit sensible removal 
of the Goldstein singularity, is probably a very short one. All we can claim, with some 
conviction, is that the present flow situation is on that list. It might be anticipated 
also that the three-dimensional or unsteady extensions of the present flow situation 
studied by Smith (1976c, 1980) and Sykes (1980) belong to the list. Moreover, although 
the possibility of others may well be worth some further exploration, the following 
discussion of our work in terms of the internal and external motions that produced i t  
(see 5s 1 ,  Z ) ,  i t  is hoped, will put the matter accurately into a broader context. 
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FIGURE 8. Diagram, not to scale, summarizing the behaviour of the pressure (dashed curve) p 
and skin friction (solid curve) r (au/ay) (2, 0) predicted throughout the flow field when h is 
large. Here 5 2  describes the properties for z < x8, $3-4 for 1x-xg1 1 and $5  for x > x g ,  with 
7 being given by h8r0 in $ 2 ,  ha(ln h)f,uSl in 53.1, h%,uh, in $3.2, h?, in 34 and by 7, in 55. The 
predictions are compared with Smith’s (1976a) results in figure 9 below. 

Concerning external motions, whether supersonic or subsonic, with a global 
Reynolds number Re, the problem ( 2 . 1 ~ - e )  arises when an attached boundary layer 
of thickness O(Re-4) and typical streamwise scale O( 1) encounters a shallow obstacle 
whose length and height scales are 1 Re-* and 1) Re-% h respectively, but with 

R e 4  < 16 Re*. 

The restriction here on 1 means that the obstacle’s dimensions are much less than those 
of the triple-deck structure (Smith 1973; Smith et al. 1981), accounting for the lack of 
an unknown displacement effect in (2.1 d) .  A summary of the flow properties produced 
when h = O( 1)  or smaller is given by Smith et al. (1 981 ) but our interest lies in the more 
significant limit h -+ 00 with 1 = O(1) where the obstacle steepens and produces 
separation. There the eddy length increases like h3, from $ 5 .  Accordingly when the 
obstacle height If Re-gh rises to O(Re-Q), the triple-deck height, so that h becomes 
O(1-* Rei5) formally, the eddy length, 1 Re-3h3, becomes O(Re-9) for any given obstacle 
length scale 1. The inference we draw from this is that as we increase the height of any 
obstacle whose length lies between O(Re-2) and O( Re-3) the grossly separated flow 
structure of $ 3  2-5 above continues to hold [once the stage h = O( 1) identified by Smith 
(1973), Smith et al. (1981) has been passed through] until the obstacle height reaches 
the triple-deck size O(Re-Q). Then, however, the triple-deck interaction between the 
induced pressure and the displacement and the influence of the uniform flow just 
outside the boundary layer must come into play in the control of the long wake motion, 
with the obstacle appearing as a normal flat plate, or fence, over the wake length scale 
(figure 8). The wake properties are then bound to change from those of $ 5 .  Eventually 
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separation upstream of the effective fence may also be anticipated when the obstacle 
height lies within the triple-deck regime. The flow properties for still higher obstacles 
depend on the nonlinear triple-deck solution. It is interesting that within the triple- 
deck stage although the obstacle acts effectively as a normal fence the separation 
streamline emerges, from the more local length scale of the obstacle itself, a t  a height 
initially less than the height of the fence (since 4 < Fmax in $ 2 ) .  More important, 
however, is the conclusion that eventually the triple-deck balance does return to take 
control of the majority of the flowfield, for steeper obstacles, and it seems definite that 
thereafter, as we move on towards the flow induced by a severe or bluff obstacle, the 
interactive triple-deck descriptions for separation and reattachment provide all the 
necessary clues to the flow structure, as opposed to the classical description which is 
limited to the much smaller disturbances discussed just previously. 

There seems less of a limitation on the applicability of the classical approach of $ 2 
and the removal of Goldstein’s singularity in $$  3-4 when the other context of internal 
motions through tubes is considered. Here with a global Reynolds number R, based 
on the pipe radius or channel width and, say, the maximum speed of the oncoming 
flow, which could be Poiseuillean, the problem (2 . la-e)  is encountered when a sym- 
metric ‘fine constriction’ of non-dimensional length O(1)  and height O(hR-4) is made 
in the tube (Smith 1976a, 6 ) .  Let us examine the implications for increasingly steep 
symmetric constrictions (h?). Smith (1978) showed that a new structure takes over 
when the constriction height reaches O(R-4) (‘moderate constriction’) as the flow 
ahead of the constriction then has to adjust nonlinearly and can separate. The upstream 
adjustment depends on the global perturbation solution in the core of the flow, how- 
ever, and that in turn depends on the global shape of the eddy downstream of the 
constriction. This eddy has length O(h3) = O(R4) since formally h rises to O(R6) for 
moderate constriction; see also Smith (1978).  On the other hand although the eddy 
boundary is still a straight line parallel to the tube axis on the 0(1) length scale, i t  
emanates from the separation position on the constriction (as in $ 5 )  which is still 
determined from the classical boundary layer on the constriction. Therefore the core 
flow perturbation and the upstream adjustment can be fixed only after the position of 
separation, with its removable Goldstein singularity, has been determined from the 
nonlinear classical boundary-layer solution. It is fortunate that the flow adjustment 
upstream of the constriction does not influence the classical layer on the constriction, 
incidentally. The option of a removable Goldstein singularity rather than a Sychev 
(1972)-Smith ( 1 9 7 7 ~ )  triple deck a t  separation was raised by Smith (1978) and seems 
certain in view of $52-5 above, although the latter paper avoided the difficulty by 
imposing restrictions on the hump shape so that other flow features could be studied 
instead. In  contrast, when the constriction becomes a ‘severe ’ one of height O( 1) com- 
parable with the tube’s cross-sectional dimensions, the core flow is so strongly affected 
(Smith 1 9 7 9 ~ )  that in the neighbourhood of separation the main flow properties are 
those characteristic of an external motion. Thus the Sychev-Smith description of 
separation seems required then, since the option of a sensibly removable Goldstein 
singularity is ruled out by the relevance of Stewartson’s ( 1 9 7 0 ~ )  analysis for the 
effectively external local flow subjected to a uniform mainstream in place of our 
analysis ( $ 3  2-5) where no uniform mainstream can make itselffelt. Between the severe 
and the moderate cases of constriction, therefore, there may presumably be a gradual 
or a sudden transition from the classically produced separation holding for moderate 
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FIGURE 9 (a, b ) .  For the caption see page 36. 

constriction to the interactively produced type holding for severe constriction. This 
would seem well worth studying because inter alia it would explain the overall forward 
movement required of the separation point on the constriction as we progress from 
moderate constriction, where (§§ 2-5) separation occurs a t  an O( 1)  distance beyond 
thed maximum constriction point, to the onset of severe constriction where the flow 
separates near the maximum constriction point in general (Smith 1979a). The above 
discussion can be modified, for the application to nonsymmetric internal flows where 
Smith’s (19776)  and Smith & Duck’s (1980) studies propose the flow structure for 
severe constriction, to non-Poiseuillean oncoming flows and to other forms of boundary 
conditions. 

Finally, addressing the structure of the large eddy and long scale reattachment 
discussed in § 5, we believe that the self-consistency demonstrated there firmly sup- 
ports the view that extended free-streamline theory gives the correct inviscid limiting 



Removal of Goldstein’s singularity at separation 35 

2 h-3  X- 4 

Q I 1 

FIGURE 9 (c d ) .  For the caption 800 next page. 

solution (a) certainly for grossly separated internal flows and (b )  quite possibly for most 
grossly separated external flows. With regard to (a), the eddy and reattachment 
structure of flow through constricted tubes stays very similar to the structure set out 
in 9 5, beyond the constriction, even when the constriction is much bigger (Smith 1978, 
1979 a). The downstream reattachment continues to be strongly influenced by the 
viscous forces produced over the vast length scale beyond separation and that allows 
the free-streamline approach ahead of the reattachment phase to remain intact since 
the action of viscosity further downstream is able to prevent the return of any 
significant back flow. So the major extra complication [see also the previous para- 
graph] produced by bigger constrictions concerns only the flow ahead of the con- 
striction (Smith 1978, 1979a) where in general a substantial separation also occurs 
eventually. There again, however, the back flow produced at the corresponding 
reattachment, where the shear layer emanating from the upstream separation meets 
the front of the constriction, is found to be small (Smith 1979a; Smith & Duck 1980) 
and so again does not disturb the properties of the extended free-streamline approach, 
allied properly to the appropriate viscous-inviscid interaction at  separation, upstream. 
Comparisons of the theory with numerical solutions of the Navier-Stokes equations 
(Dennis & Smith 1980) up to Reynolds numbers of 2000 and with experimental findings 
(Smith 1979a) add flirther weight to the present view. With regard to (b )  above we can 
claim that for the obstacles (severely disturbing an external boundary layer) for which 
(2.1 a-e) holds with h large the extended free-streamline approach is self-consistent 
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FIGURE 9 .  Comparisons betwoen the present theory and Smith’s ( 1 9 7 6 ~ )  results (his figure 5) for 
the obstacle F ( z )  = xe-x*/32 when z 3 0, F ( x )  = 0 when x < 0. 

(a )  Pressure k 2 p  versus J : :  - -- -, from Smith (197th)  a t  values of h shown; __ , from 52. 
‘Limit’ gives the prediction (2.2) with (2.4) only, while ‘Limit 2 ’  and ‘Limit 3 ’  include t>he 
higher-order effect ( 2 . 7 ) ,  for 2gh = 2 ,  3 respectively, where the displacement po(z) in ( 2 . 7 )  follows 
from ( b )  below. 

( b )  Skin friction h-37 versus 2: - - -, as in ( a ) ;  -, T~ from the solution of the classical 
boundary layer ( 2 . 6 ~ - e ) .  Also shown (... ...) for reference are P(z )  [the obstacle shape, or 
external velocity driving the boundary layer, from ( 2 . 6 c ) ]  and Po(%) F ( z )  which fixes the displace- 
ment Po(%) of (2 .6e) .  The Goldst,ein singularity us .7: + %,- = 4 . 7 8 -  seems fairly evident in the 
behaviour of T ~ ( Z )  and Po(.). 

(c) Pressure k 2 p  versus k 3 z  : - - -, as in ( a )  ; ___ , from $5 (figure 7 a ) .  Here F, = 2.341. 
( d )  Skin friction 7 versus h-% : - - -, as in ( a )  ; __ , from 8 5 (figure 7 b ) .  
( e )  Positions of separation (xsep) and reattachment (.7:r+att) as functions of h :  0, 0 give z,,~, 

xEatt respectively from Smith ( 1 9 7 6 n ) ,  while for h $ 1 the solid line is the prediction rVEP - x, 
from the solution of ( 2 . 6 ~ - e )  and the dashed line the prediction zreatt - h 3 5 ~  from 55 (see also 
figure 7 b ) .  An origin shift of 10 has been applied in the latter prediction. 

again due to the action of viscosity during reattachment. On the other hand an 
increase of the obstacle height, or indeed its length, to the triple-deck size provokes a 
strong interaction with the mainsteam and thus eventually a probable change in the 
character ofthe reattachment process (see the st’udies by Messiter, Hough & Feo 1973; 
Daniels 1979) as well as in the separation process as described previously. The weakness 
of the external mainstream effect in the present work [i.e. in (2.1 a-e)], before that 
triple-deck stage is reached, is responsible for the likeness of the external flow pro- 
perties then to internal flow properties. Whether or not the extended free-streamline 
approach continues t,o hold for still bigger obstacles remains to be settled fully, quite 
possibly by means of accurate numerical solutions of the triple-deck problem coupled 
with more asymptotic understanding of eddies and reattachment. There is strong 
evidence, however (Burggraf 1975; Smith 1979b), in favour of the opinion that the 
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interactive or extended free-streamline theory is also the correct limit for much bigger 
disturbances in external flows. 
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